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EQUATIONS OF MOTION FOR STORM SURGES' 
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ABSTRACT 

A transient Ekman's transport equation, in which bottom stress is formed as a convoluted integral in terms of 
surface stress and surface slope, and a continuity equation are used as predictors to compute storm surges in a model 
basin. Driving forces in the basin are analytically computed, using a model storm t o  represent actual meteorological 
conditions. 

A coastal boundary condition that relates surface slope to surface stress is developed by balancing slope and 
drift transports normal to a vertical wall. A t  interior grid points of the basin, sea-surface heights are computed by 
numerical means, using the prediction equations. These sea-surface heights are then extrapolated to  the coast to  agree 
with the coastal surface slope given by the boundary condition. Coastal storm surges computed in this manner are 
compared with observed su-%ges to test the model developed in this study. 
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1. INTRODUCTION 

A mathematical model for storm surges could begin 
with the theory of drift and slope currents as developed 
by Ekman (1905, 1923). This theory, though based on 
simplifying assumptions of shallow-water theory, hydro- 
static pressure, homogeneous sea of infinite horizontal 
extent, constant Coriolis parameter, constant eddy vis- 
cosity coefficient, and neglect of lateral stresses and non- 
linear interaction terms, is still superbly useful for many 
investigations. Most of these assumptions are too severe 
for deep seas of large areal extent where variation of the 
Coriolis parameter, density stratifications, and lateral 
stresses are important physical processes. However, the 
equatious may be of sufEcient generality to compute 

I This study is in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy of Engineering Science in the School of Engineering and Science of New York 
University. 

2 Now affiliated with the Techniques Development Laboratory, ESSA, Silver Spring, 
Md. 

storm surges along shallow continental shelves of limited 
areal extent where variation of Coriolis parameter is 
negligible and lateral stress is much smaller than the 
vertical stress. 

Following Ekman, one can write the equation of motion 
in complex form 

where 

w=u+iv, horizontal components of current, 
f=  Coriolis parameter, 

g = gravi ty , 
h=storm surge height, 
v=constant vertical eddy viscosity coefficient, 

z'=vertical coordinate positive upward, prime symbol 
in anticipation of nondimensionalizing, and 

h,=inverse barometric height from atmospheric 
pressure, 

and in a more convenient form to nondimensionalize the 
vertical coordinate as 

p= -g t ( a (b -wiw + w ~ - ~ ~ / a y ) i ,  

where z=z'/H and H(s,y) =depth of the basin. 
Ekman's equation (2) is formidable for computational 

purposes if the vertical coordinate is retained even in a 
restricted area. However, if the equations are integrated 
in the vertical to form transport terms and then linearized, 
considerable simplification in computational procedures 
is gained. This is justified in storm surge work because 
currents are only of casual interest compared to the slope 
or height variations of the sea surface. Equation (2) can 
then be rewritten as 

H dz (3) 
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where 

W = H s o  wdz, &=Ha, and F=(v/H)(aW/az)l,=o. 
-1 

The vertical coordinate in equation (3) has not yet been 
completely eliminated. It appears implicitly in the 
vertical gradient of velocity on the bottom, that is, the 
bottom ~ t r e s s . ~  By assuming intuitive forms for bottom 
stress that are not based on Ekman’s theory, the vertical 
coordinate can be eliminated. Such investigations have 
been carried out by Hansen (1956) and Miyazaki (1965). 

Instead of treating bottom stress as an extrapolation 
of present forces, Platzman (1963) considered the time 
history of present and past forces using Ekman’s theory 
and derived a d i f l e ren td  operator for bottom stress in 
series form. Jelesnianski (1967) used a modification of 
this scheme in numerical computations of hurricane- 
generated storm surges along coastal areas. The results 
appeared to  explain some salient features of storm surges. 

Platzman’s series expansions, designed to act separately 
on transport and driving forces, had inherent conver- 
gence difficulties. The difficulty disappeared only when 
the two series were truncated to first order for the trans- 
port field and zeroth order for the driving forces; thus, 
the truncated form implies that immediate time-history of 
forces is sufficient to express bottom stress. This restric- 
tion on time history was sufficient motivation for investi- 
gating the possibility of using an integral operator for 
bottom stress that incorporates all the time history of 
the system. 

Using Ekman theory, Welander (1957) suggests that 
bottom stress can be determined from the local time- 
histories of wind stress and surface slope by means of 
an integral operator in the form of a convolution integral. 
In  this approach, there is a lag in time between the 
appearance of wind stress or surface slope and the con- 
sequent bottom stress. The operator includes the entire 
time-history of driving forces indefinitely into the past. 
Welander also suggests a single prediction equation to 
compute the surface heights or storm surge, but only 
his first suggestion is followed in this study. The exact 
analytical form for bottom stress is approximated by 
an integral form and computed by numerical techniques. 
Thus, the transport equation of motion and a continuity 
equation are used in this prediction scheme. 

In Platzman’s and Welander’s schemes, the vertical 
coordinate is fully eliminated at  the expense of consider- 
ing a new form for the variation of bottom stress in terms 
of quantities that are not dependent on the vertical 
coordinate and time. 

Ekman’s equation cannot satisfy physical boundary 
conditions a t  a wall or coastline, that is, vanishing currents 
or vanishing current normal to the wall. However, van- 
ishing transports normal to  the wall can be used as 
representative boundary conditions. The case of zero 
depths a t  a coastline introduces singularities in the equa- 
tion of motion that can be treated mathematically and 

computationally for certain types of depth profiles gener- 
ally encountered in nature. 

It appears from equation (2) that the vertical current 
profile is a function of driving forces at  local points 
without regard for neighboring points, and similarly the 
transports in equation (3). This is not true, for we have 
yet to satisfy the continuity equation 

ah au av 
at ax a y  
-=---- (4) 

where W= U+iV defines the components of the complex 
transport. 

The surface slope Vh will be called the dynamic slope 
to distinguish it from the inverted barometer effect. The 
dynamic slope is treated as a driving force in this study. 
The driving forces, F and Q in equation (3), have been 
regarded as independent functions of time, even though 
they do vary in space and are interdependent. This has 
been done purely for convenience, but with the under- 
standing that the momentum equation is spatially 
connected through the continuity equation. 

I n  this study, a model basin and model storm are used 
with the prediction scheme to compute surges. The 
computations are performed numerically using finite- 
difference equations. Comparisons of observed and com- 
puted surges are made for three hurricanes that passed 
Atlantic City with tracks more or less parallel to  the coast. 
The surge from this type of storm passage is very compli- 
cated in that several resurgences occur after storm passage, 
in addition to the peak surge which occurs during storm 
passage. 

2. PREDICTION EQUATIONS IN COMPONENT FORM 

For convenience, the momentum equation (3) is now 
written as 

d+ ij) w= Q +F- ( eQ+ e,) (at 
(5%) 

where eQ, CF is notation for complex convolution inte- 
grals representing bottom stress in terms of surface slope 
(dynamic and atmospheric pressure) and surf ace wind 
stress, respectively. The form of these integrals is given in 
a later section. I n  component form, the above becomes 

where CZ)F, (u)F are components of surface stress. There are 
six e’s in the above equations, the real (T,) and imaginary 
(il) part of C for each of three driving forces, where j=1, 
2, 3 means dynamic slope or storm surge, slope due to 
atmospheric pressure, and wind stress driving force, 
respectively. 

In a slralifed deep sea, it is assumed that the velocity vector vanishes at some distance 
below the surface because of mass adjustments; thus, bottom stress also vanishes. In this 
case, lateral stresses are important dissipation forces. 

4 Platzman (1963) treated transport as a driving force in his series expansion, for conven- 
ence in numerical computations. His method could equally well treat Q as a driving force. 
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The surface stress F in this study is given by 

where Vs=complex wind, pa, p=air, water density, C the 
drag coefficient is assumed constant, and Cp,/p=3X lo-’ 
f t2/sec2. 

Equation (5b) and the continuity equation (4) are the 
prediction equations used in this paper. Boundary condi- 
tions must be specified to complete the system; these are 
given in later sections. The numerical scheme for computa- 
tions is given appendix D. 

The numerical scheme was tested; comparisons were 
made between it and known analytical solutions without 
bottom stress for resonance phenomena (Reid 1958)-that 
is, traveling (edge) waves. For comparison purposes, only 
basins with shallow slopes and small coastal depths were 
used. The computed periods and/or wave lengths agreed 
with the fundamental mode of the analytically derived 
dispersion equation to within a few percent. No com- 
parisons were made of the computed amplitudes of the 
surge since the driving forces of this study are not equiv- 
alent to the ones used in known analytic solutions 
(Greenspan 1956, Munk 1956). 

3. BOTTOM STRESS AS A CONVOLUTION INTEGRAL 

The bottom stress convolution integral is a mathemat- 
ical statement that the fluid not only senses present forces 
but also remembers past forces, that is time history.” 
For formulating the bottom stress (./El) (dwldz) l z = - - l  in (3), 
equation (2) is solved for w, the current profile, as an 
exact convolution integral in terms of the local driving 
forces F and Q. A boundary condition for the bottom is 
needed to complete the transport prediction equation; a 
simple one is W ~ ~ = - ~ = O .  With this boundary condition, 
a solution of equation (2) gives bottom stress as 

I I  

(appendix A)) where KF(7), KQ(T) are appropriate kernel 
functions. Note that v/Hz can be used as a time scale for 
the kernel functions; thus, TH=(v/H2)t  is a convenient 
nondimensional parameter. For large TH, one form for the 
kernels is 

and (6) 

5 Other bottom boundary conditions may be preferable, such as ( v / H )  (&/ar) 1 = 

8WIS-1 or ( u / ~ ( ~ / ~ z ) ~ , I ~ ~ ~ w ~ P o ~ , - I ,  where 8 is a slip coefficient. The solutions have 
forms that are laborious for computations; hence, they are not considered in this pre- 
liminary study. 

and for small T H ,  another form is 

and (7) 

m 
r 

1+2 (-l)n exp 1 K Q ( t ) = = P  24-1  n=l 

The characteristic or reference time T H  varies considerably 
in this study due to variable depths in the basin. @om- 
parisons of the two time scales associated with v/H2 and 
.f in the bottom stress convolution integrals suggest the 
latter time scale to be of small importance in shallow water. 

The graphs of the kernels, with T H  as the independent 
variable, are shown in figure 1.  The kernels are uniformly 
continuous for all positive values except in the neighbor- 
hood of TH=O. From equation (7), the structure of the 
kernels for TH-+O+ (small time or deep water) can be 
studied, noting that xne-z-+O as x - i w  for all n, K Q 4  
(TH)-1/2, and Kp+O as TH+O+. The kernel KF has an 
essential singularity a t  TH=O; this is demonstrated by 
considering the coefficients of a Taylor’s expansion of (7) 
where dkKF/dT41TH,o=0 for k=O, 1, 2, . . . )  that is, 
the power series expansion for K F  vanishes although KF 
does not. 

Since this study deals with shallow water, the form (6) 
is preferable to (7). For large values of T H 1  TH>0.3, the 
kernels given by (6) converge rapidly, and only the very 
first few terms are required in computations; for small 
T,, TH<0.3, the series converges very slowly, and many 
terms would be required. For convenience in numerical 
computations, either kernel is represented by means of a 
Jinite series of exponentials consisting of the very first few 
terms of equation (6) plus correction terms. The kernel 
can then be written as 

where N is finite and a,, b, are to be specified. 
If at  each time step in computations the entire convolu- 

tion integral is recalculated at  each surface grid point, an 
inordinate number of computations and amount of ma- 
chine core storage are required. By taking advantage of 
an “exponential0 kernel, a recursion formula can be 
developed to update or modify the integral, using previous 
values and newly generated data that appear a t  each time 
step. 

To develop a recursion formula, let G be any of the 
three driving forces of the convolution integral. Represent 
its exact kernel by equation (8), then define 

Letting t=mAt and e . , (mAt)=  e$, one can rewrite the 
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forces can be represented by a linear function in the 
small time interval At. Suppose now that equation (12) 
is integrated by parts. Then 

.1.0 

Applying (13) to the above equation gives 
0.2 

Gs=kl k=O (An)k[B,Cm-k-l+ EnGm-kk] (14) 

where 
0.1 

An=e-(bm+*nA'; ( )k=kth power; 
K 

By suitable contraction on limits in the summation opera- 
tor, equation (14) can be written as o,02 

0 01 
0 0 2  0 4  0 6  0 8  1 0  1 2  

Tn=$.jt forces are initially zero. 

FIGURE 1.-The kernels K p ,  KO as functions of the nondimensional - parameter 7". 

above as 

The summation and integration operators have been inter- 
changed; this is permissible for finite sums. The inter- 
change can also be made for the exact kernels given in 
equation (6), even though the series are not uniformly 
convergent a t  Ta=O; the proof of the interchange comes 
from Lebesgue'a-theorem as given in appendix B. 

Now consider any nth term in equation (10) and form 

and 

To process (12) into a numerical form, let 

G( mAt -r)  &a- (mAt-r)@ (13) 

where a = Q t n - k ,  @ = [ @ - R - l -  G"-k ]/AtJ and G'(mAt-r) 
=-@. Here, an assumption is made that the driving 

or after some rearrangement 

With the aid of equation (15), the above becomes 

Returning to equation Cll), one obtains 

which is a simple recursion formula for the convolution 
integral. Since the convolution integrals are zero at  t=O, 
then for initialization e:=O and C&=O. To break (19) 
into real and imaginary parts to fit (5b), consider equation 
(11) a t  time t=mL\t. Then 
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where 

and (21) 

Cgi) ~ = A [ i ~ n C F , ~ ~ ~ A ( ~ ) n C g l ~ ~  +B<t, nGCS1+B[r)nGFzT1 

+E<i)nGF$ 

and where Gcr,), G q  means real and imaginary parts of 
the j th  driving force and the subscripts (r)n, (i)n mean 
real and imaginary parts of the complex coefficients 
An, Bn, and En. The complex coefficients given by equation 
(14), although formidable in appearance, can be computed 
once and for all when a, and bn from (8) are specified for 
each kernel separately. Note that j=1, 2 have the same 
kernel KQ, but different driving forces. 

4. APPROXIMATING THE KERNELS Kp, KQ FOR 
NUMERICAL COMPUTATIONS 

I t  is very difficult to form the kernels KF, KQ with 
great accuracy throughout the positive T H  axis when 
using the finite sum of exponents given by equation (8). 
This difficulty arises because of the nonuniform conver- 
gence of the kernels a t  the point T H = O .  For shallow water, 
where bottom stress is most important, the kernels can 
be adequately represented for moderate to  large time 
intervals with the first term of the series (6) ; consequently, 
it  is desirable to consider this first term as the major part 
of the kernel, and if any other terms are used they will 
be appropriate corrections of insignificant value except 
when 5!L is small. The corrections, if any, should be in 
exponential form to take advantage of the recursion 
formula given by (19). 

For KF, no finite number of terms in (8) will adequately 
represent the kernel as TH+O+. For convenience, equa- 
tion (8) is approximated by using the first term of (6)  
in its exact form and altering the coefficient of the second 
term so that 

(22) K F- LA 'p: 2 [ e - X 2 T B / 4 - e - 9 T 2 T H / 4 ]  

where A is a normalizing factor given by the ratio of the 
integrals (6) and (8) as 

Although (22) does not accurately represent the kernel 
KF for small T,, it  does have the property of starting 
off with zero value, reaching a peak value, and then 

decreasing monotonically and exponentially to zero as 
T ~ 3 0 3 ,  all in conformity with the character of the exact 
kernel. 

For KO also, no finite sum of terms given by equation 
(8) will adequately represent the kernel as TH-+O+. The 
character of the curve, however, can be represented by 
taking only the first term of the series (6) with altered 
coefficients in the form 

The approximation for KQ given by (23) is finite as 
T H - + O + ,  whereas KQ+a in equation (6) .  However, the 
integrals of these kernels enter the computations and 
converge whether using the exact or approximate kernel. 

Although the approximations for the kernels do not 
accurately agree with the exact kernels, the integrals 
with respect to time for large t or small H do agree. In  any 
case, the approximations have the characteristics of time 
history in the convolution integrals and should shed some 
light on bottom stress time-history. 

5. COASTAL BOUNDARY CONDITIONS 

In  formulating boundary conditions, the artifice of a 
vertical wall placed at the coast is used. This is done 
applying the argument that the bottom slope at and near 
a coast is two or three orders of magnitude greater than 
the average slope of the Continental Shelf. 

In Ekman's equations, for basins with small sloping 
bottoms, horizontal viscosity at neighboring points is 
considered small compared to vertical viscosity. This 
condition no longer holds at coastlines having large bottom 
slopes and /or the infinite slope of a vertical wall. Thus, 
to satisfy boundary conditions of a vertical wall placed in 
the fluid, we would have to consider at least the effects of 
vertical motion to balance the horizontal viscosity. If 
Ekman's equation is to be used with coastlines, then 
compromises are in order. 

A physical boundary condition at a coast with a 
vertical wall has vanishing normal velocities, that is, 
~(~,y ,z , t ) , ,~=O. For transport equations of motion, we 
settle instead for a more relaxed boundary condition 
represented by vanishing normal transport, that is, 
U(~ ,y , t ) ,=~=0 .  This relaxed condition permits a useful 
interpretation of Ekman's equations at  the coast. It is 
possible to postulate a balance between wind and drift 
transports normal to  a vertical plane, and this plane can 
then be regarded as a coastline. 

The separate Ekman spirals, drift, and slope currents 
in the vertical differ, and for finite depths there can be 
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FIGURE 2.--Computed coastal surge profiles at the time of peak 
surge for various sums of the convolution integrals in the predic- 
tion equations. Observer is a t  sea, facing land; abscissa is the 
coastline. 

at  most only a finite number of points in the vertical 
where the total current has vanishing components in a 
given horizontal direction. This means that, if bottom 
stress is considered in Ekman's equation, it is impossible 
to have both vanishing transport and bottom stress 
normal to the boundary. We insist, therefore, on vanishing 
normal transports, dU(~,y , t ) /a t l~=~=O,  at the coastline 
and accept the resulting bottom stress values computed 
by the convolution integrals in (5b) to form 

The above equation is also obtained from equations (41) 
and (54) , the exact analytical expressions for transport, 
by setting Re(a/at)(Wdri/(+Wsloge) = O ;  in the compu- 
tations, this is a more convenient form than the boundary 
condition, Re( Wd 

The boundary equation gives surge gradient and not 
surge heights; thus, it cannot be used directly to  compute 
coastal surge profiles. The surges on the boundary are 
determined from the boundary equation by finite-dif- 
ference techniques using heights at  interior points to follow 
the slope gradient at  the boundary. 

I n  the case of no bottom stress, the dynamic surface 
slope gradient force balances the driving forces of the storm 
and the Coriolis force at the boundary. It may at  first appear 
implausible to balance surface and body forces, but the 
body forces have been integrated in the vertical so that 
equation (24) is dimensionally correct. For no bottom 
stress, the eddy viscosity coefficient does not enter into 
computations since it is contained implicity in the surface 
stress and transport terms. This means that v can take 
on any value except 0 or 00. The wind or surface stress by 
definition does not change, and the transport field always 
remains the same even though the vertical current profile 
varies with the fixed parameter V. 

+ w, lo , , )  = 0.  

For an example of the results using the boundary 
equation with bottom stress, consider a storm traveling 
across a basin from sea to land and normal to a straight- 
line coast. The nature of the storm, basin, and computa- 
tional scheme are given in later sections. Figure 2 illus- 
strates coastal surge profiles a t  the time of peak surge for 
various elements of the convoluted integral sum in the 
equations of motion and the boundary equation. Notice 
the strong effect of the dynamic surface slope on the 
coastal surge profile. 

The boundary depths have not been defined with any 
precision, since empirical computations demonstrate (for 
the model storms, basins, and numerical scheme of this 
study) that the surge profile at  the coast is relatively in- 
sensitive to  any alteration of the coastal depths providing 
the depths a t  interior points of the basin are unaltered; 
this holds even if the boundary depths become small but  
finite. ' 

To investigate the case of zero boundary depths with 
bottom stress, one must reformulate the boundary equa- 
tion. To show this, return to the transport equation of 
motion (5b) and consider the following functions present 
in the convolution integrals: 

lim - 2v KF(7); lim - 2v KQ(7). 

H-10 ~ - 1 0  H 2  

These limits are zero everywhere on the positive TH axis, 
except TH = 0;  the integrals of each function from 0 to 00 
is 1, so that the behavior has the form of a Dirac function. 
Hence equation (5a) becomes 

(The same result follows if v - m  .) The solution to equa- 
tion (25) depends on initial values of W ,  which are zero 
(or the transports become zero by definition for zero 
depths); hence, the transport is zero for all times. Now 
(24) is the same as Re(d'N/dt)=O; so for H+O, the 
boundary equation reduces identically to zero. 

To determine a coastal boundary condition for coastal 
H+O, we consider the structure of the vertical current 
profile for small depths. The exact form for the 
drift current (after division by H) is given by equation 
(40) as 

X cos f7 + ( g ) P ' ( t -  T)' sin JT] 

As H+O, the limiting form behaves like a Dirac function 
so that 

liml - =- ( l + z ) ( z ) ~ ( t )  (26) 
U 1 

H-10 Hdr l l t  v 



468 MONTHLY WEATHER REVIEW vol. 98, No. 6 

since 

-!- H2 n=O 5 cos (2n+l) z L m  exp{ -[(2n+l) gT & t } d t  

8 
vn2n=O (2n+1)2 v 

cos (2n+l) ; 2 

=- (l+z). =- -& 
(See Dwight 1961.) Interpreting equation (26) for shallow 
water, we see that the current varies linearly with depth 
and the stress as (")F(t); also, the Coriolis parameter is no 
longer significant. 

From equation (53), the exact form for the slope vertical 
current profile (after division by H )  is given as 

As HAO, the limiting form also behaves like a Dirac 
function, so that 

(27) 
1 

=- (l-zz)(")Q(t) 

since 

7 r 1  =- l6 - ____ (-lP cos (2n+l) - z=- (1-22). 
m3 la=o (2n+1)3 2 2v 

(See Dwight 1961.) Interpreting (27) for shallow water, 
we see that the current varies parabolically with depth; 
the stress is zero on the surface and varies as (")&(t) on 
the bottom; the Coriolis parameter is no longer significant. 

For vanishing transports normal to a coast, we then 
form 

or 
3 '"'Q(t)=-- 2 @)F(t).  

/ LATERAL 
BOUNDARY-%='- 

FIGURE 3.-Rectangular one-dimensional variable depth model 
basin. 

follows that (z)Q=-(Z)F as given by equation (24), and 
the factor is 1. 

The form of the surge in the neighborhood of the 
seaward boundary is strongly influenced by the depth 
profile. Suppose a t  the boundary H=(Yz@; a and p are 
constants. Then taking (")&=Hdh/dz, it is seen that the 
surge h a t  the boundary would be finite or infinite as 6 
is less or greater than 1.6 I n  particular if p=1, there is a 
logarithmic singularity in h. 

Nonlinear effects, no doubt, take precedence as H-0. 
These effects are not within the scope of this study. 
Because of this, and since singularities are introduced in 
the equations of motion, the case of zero boundary depths 
is not considered in the computational methods of this 
study. 

When the coastal depths are finite, it is possible to 
determine Q in terms of F as a boundary condition 
(appendix C). This form of the boundary condition may 
be preferable to equation (24), for example for Welander's 
suggested numerical scheme; both forms are identical 
to within an initial constant, and the initial constant is 
zero for an initially quiescent sea. 

6. MODEL BASINS AND STORMS, OPEN BOUNDARIES, 
INITIAL CONDITIONS 

Ekman derived the above result for the equilibrium case 
(Neumann and Pierson 1966). A useful interpretation of 
the last equation could be as follows. If the characteristic 
time TH is 1, then tO=H2/v is a measure of time to reach 
equilibrium state. But shallow depths imply to-+O, which 
means that, even near zero, time is large relative to  the 
time required for the equilibrium state to occur. It is 
emphasized that the 312 factor for the coastal boundary 
condition in (28) occurs only in conjunction with the 
no-slip bottom boundary condition wZ=-,=O. For no 
bottom stress, that is pure bottom slip and H-tO, it 8 Natural coastlines generally haveBC1. 

The model basins of this study correspond to that given 
by Jelesnianski (1966) consisting of a rectangular-shaped 
variable depth basin, open to the sea on three sides. Only 
one-dimensional depth profiles are used since the con- 
tinental shelves of the oceans vary predominantly in one 
direction. Except for reprogramming, the need for extra 
machine core storage, and extra machine time, there are no 
essential or insurmountable difficulties in the model 
preventing two-dimensional bottom specifications if such 
detail is desired. Figure 3 illustrates the idealized basin 
used in this study. 
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For any grid scheme in numerical computations, the 
grid distance must be fine enough to portray not only the 
storm surge but also the driving forces of the storm. This 
distance may be determined by empirical tests. Due to 
computer core limitations and economics of machine 
operations, it is impossible a t  this time to consider an 
entire ocean as a basin; open boundaries are therefore 
used in this study. 

On the two lateral, open boundaries normal to the coast, 
the boundary condition used is aV/ay=O. This condition ’ 
is arbitrary and used purely for convenience. In  any 
case, reflections from these boundaries eventually corrupt 
the interior of the basin. However, if the boundaries are 
placed sufficiently far from an area of interest along the 
coast, there will be a time interval before it is corrupted 
by reflections from the boundaries. The placement of 
these side boundaries are determined by empirical tests. 

The deep water open boundary is placed somewhat 
arbitrarily near the juncture of the continental shelf and 
slope. In  deep water away from coastal influences, the 
dynamic surge is small, and the surface heights correspond 
very closely to the inverse barometric effect. The boundary 
condition used is h=ho. 

The model storms used in this study are analytically 
described using simple meteorological parameters pre- 
sumably available a t  weather stations. For the formulation 
of the model storm, see Jelesnianski (1966). 

The fluid in the basin is initially quiescent. The storm is 
allowed to grow to maturity in a continuous but rapid 
manner. Initial positioning of the storm is unimportant if 
the placement of the mature storm lies in deep water 
beyond the Continental Shelf. For storms traveling more or 
less parallel t o  the coast and along the Continental Shelf, 
initial placement must be at  least sufficiently distant from 
the area of interest so that the surge has time to form; 
this can be operationally determined by empirical tests 
through variation of initial storm placement, growth time 
of storm, basin length, etc. 

7. TESTING THE MODEL 

Prior to testing the model with actual observations, a 
value for the eddy viscosity coefficient v is required. To  
see how the coastal surge profile varies for different values 
of v, consider a particular model storm traveling normal 
to the coast of a model basin. Figure 4 is a plot of computed 
surge profiles at  the time of peak surge. For small V, the 
profile approaches the no bottom stress profile. By com- 
paring the observed surges from tide gages against com- 
puted surges of the model, it is possible to choose a value 
of v to adequately match the observed surges. 

The most complicated coastal surge phenomena occur 
for storms moving more or less parallel to the coast. I t  was 
decided, therefore, to test the model for such storms by 

7 One could postulate radiation properties, such as making the two boundaries trans- 
parent to waves, say traveling parallel to the coast. For example, it is possible to form 
traveling waves with phase speed equal to the speed of the storm traveling parallel to the 
coast (Jelesnianski 1966). 

8 The profiles computed by Platzman’s method (Jelesnianski 1967) behave somewhat 
similarly except for the important difference that the peak surge for small Y exceeds the 
peak surge of the no bottom stress case. 
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FIGURE 4.-Coastal storm surge profiles for different eddy viscosity 
values. All other variables are the same; abscissa is the coastline. 

comparing it with observed storm surges off Atlantic City. 
Only on the Atlantic Seaboard do historical storms have 
tracks nearly parallel to a coast, and Atlantic City is the 
only station in this region that has a tide gage well exposed 
to the sea. 

Figure 5 shows the paths of three storms on which 
computations made in this study were based. The plan 
view of the model basin is 560x65 mi. The depths of the 
model basin vary in one dimension only and are equivalent 
to  the mean depths in the region off Atlantic City. Ini- 
tially, the storms were placed at  the + points in the figure, 
with zero strength. While traveling along their tracks, 
they were allowed to grow to maturity in a rapid but 
continuous manner over 2 hr. The observed meteorological 
storms varied in strength, size, and speed of motion along 
their tracks. The meteorological parameters used to de- 
scribe the model storms were supplied by the Hydro- 
meteorological Branch, Water Management Information 
Division, Office of Hydrology, ESSA, Silver Spring, Md. ; 
they are not listed in this study. For computational con- 
venience, the fixed storm parameters in the model were 
altered only once every hour to correspond with the ob- 
served or extrapolated synoptic data of the storms. 

Figure 6 shows an observed tide record for the Atlantic 
City tide gage during passage of the September 1944 
storm. It was necessary to put the raw observed tide data 
in suitable form before effecting comparisons between 
observed and computed data. The sequential numbers on 
the tide record represent hourly times of tide heights 
reported by the Coast and Geodetic Survey. The hourly 
records do not adequately portray the low-frequency 
oscillations; data between the hourly records were there- 
fore, supplied by smoothing the high-frequency oscillations 
of the tide record by eye. The astronomical and seasonal 
tides were then subtracted from the prepared tide record 
using methods described by Harris (1963). This type of 
processed data will henceforth be referred to as observed 
data. 

Figure 7 compares computed versus observed tides a t  
Atlantic City for the 1944 storm whose path is illustrated 
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in figure 6. The peak tide, computed with and without 
bottom stress, agrees very well with the observed peak 
and time of occurrence. This is to be expected, since the 
peak is directly associated with the storm center and for 
fast mowing storms the characteristic Ekman time t=H2/v  
is too large for bottom stress to be significantly felt under 
the storm center. After passage of the storm center and 

FIGURE 5.-Observed paths of three storms along 

with the passing of time, the resulting waveforms or 
resurgences in the basin are then affected by bottom stress 
as demonstrated by the figure. The resurgences computed 
with and without bottom stress have almost equal ampli- 
tude and phase until contaminated by reflections from the 
false open-boundaries. With bottom stress, the resurgences 
decrease in amplitude with time, but with very little phase 
change as compared to no bottom stress. Figures 8 and 9 
show computed results for the two remaining storms. I n  
all these computations, v was given the value 0.15 ft2/sec 
( 139 cm2/sec). 

On the eastern seaboard, there are insufficient tide gages 
to determine the character of the observed coastal surge 
profile. Figure 10 illustrates the time history of the COM- 

puted surge profile on the coast for the September 1944 
storm. The directly generated crest and trough associated 
with the storm center, and moving with it, decrease in 
amplitude with time due to decreasing storm strength. 
The nature of the following resurgences are not discussed 
except to point out that phase speeds are not equal to 
storm speed. 

Traveling waves, with phase speed equal to storm speed, 
can form for the storm sizes in the model of this study, 
but they depend in part on the nearshore bottom topog- 
raphy. To demonstrate this, consider the model basin off 
Atlantic City modified now to a shallow linear depth as 
shown in the insert of figure 11; when the September 1944 
storm surge is recomputed in this modified basin, the 
iesurgences (fig. 11) appear to be traveling waves with 
phase speed equal to storm speed. 

The resurgences computed with bottom stress in this 
study agree in essence with the observed resurgences, but 
there are uneG1ained phenomena. For example, in figure 
8 (hurricane Donna), there is an observed spike a t  1400 
EST that was not reproduced in the computations; a 
similar but less pronounced spike exists in figure 7. 

The driving forces of a storm can excite certain wave 
forms that become trapped in a basin (Longuet-Higgins 

he Atlantic 
Seaboard. The model basin position is shown by a rectangle. 9 In  Platzman’s method (JelesniansBi 1967), there are significant phase changes. 

FIGURE 6.-Recorded tide traced from original gage record, and predicted astronomical tide (smooth curve) a t  Coast and Geodetic Survey 
Tide Station, Steel Pier, Atlantic City, N.J. The integers are hourly reported tide heights (reproduced by permission of Harris 1963). 
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FIGURE 7.-Comparing the observed and computed surges at 
Atlantic City for the September 1944 storm (zero time at initiali- 
zation for computations). 

FIGURE 8.-Observed and computed surges a t  Atlantic City for 
hurricane Donna. 
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FIGURE 9.-Observed and computed surges at Atlantic City for 
hurricane Carol. 

FIGURE 10.-Time history of the computed coastal surge profile for 
the September 1944 storm. Arrows show the path of the storm 
relative to the coast (storm initially 40 mi from bottom boundary). 
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FIGURE 11.-Same as figure 10, but using the shallow, linear depth 
basin shown by the broken line depth profile in the insert. 

1967) , and these trapped waves produce resurgences. The 
phenomena of trapped waves is beyond the scope of this 
study. It is suggested that the application of geometric 
optics, or ray theory, could be a fruitful venture to shed 
light on possible trapped waves for any given basin (Shen 
and Meyer 1967). 

Many simplifying assumptions are used in the model. 
No account is taken of the interaction between transient 
surges, the basic flow of the general oceanic circulation, 
and the astronomical tides. Curvilinear boundary coasts, 
estuaries, and two-dimensional depth profiles have been 
ignored. Notwithstanding the simplified treatment, there 
is reasonable agreement between observed and computed 
surges. 

8. SUMMARY AND CONCLUSIONS 

A model storm described analytically with simple 
meteorological parameters is used to  represent observed 
tropical storms and thereby to compute driving forces that 
generate storm surges. These surges are computed by 
numerical means in a rectangular-shaped model basin 
with depths varying in one dimension, and open to  the sea 
on three sides. 

To test the model used in this study, computed surges 
for three storms traveling parallel t o  the eastern seaboard 
of the United States are compared with observed surges at  
Atlantic City. Ekman's equation of motion in transport 
form was found to be very useful when bottom stress was 
put in a convoluted form to take into account its time 
history at  local points of the basin. The exact form of the 
integral is cumbersome to work with, but a simple repre- 
sentation of the kernel in the convolution integral gave a 
recursive relation in convenient form for numerical 
computations. 

The computed results do not differ greatly from those of 
a differential form for bottom stress given by Platzman 
( 1963) and computed by Jelesnianski ( 1967) , except that 
' -  -.-tegral form was better behaved for small values of 
the eddy viscosity and there were smaller phase changes 
in the post storm resurgences following passage of the 
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model storm. The integral form is not truncated as is the 
differential form, and it retains all the time-history bottom 
stress generated by driving forces; this serves to eliminate 
awkward questions on convergence properties of bottom 
stress formulation. For more realistic modeling of bottom 
stress, extra machine computations are required for the 
preliminary application of this study. 

A time-dependent coastal boundary condition was de- 
veloped by balancing drift and slope transports normal 
to a vertical wall. This boundary condition was then 
specialized in a form containing bottom stress and con- 
venient for computations; it cannot, however, handle 
zero boundary depths. A separate time-dependent bound- 
ary condition that agrees with Ekman’s classical equi- 
librium case was formed for zero depths. A defect at  the 
coastal boundary is that Ekman’s equation uses vanishing 
transport that in turn does not imply vanishing current. 
Thus, the boundary condition is only a first approxima- 
tion that is hopefully acceptable for the present state of 
the art in storm surge computations. 

The results of this study explain many of the observed 
phenomena of storm surges, but there are some unex- 
plained anomalies. These anomalies may in part be due 
to unknown or unobserved meteorological activity in the 
storms, the gross simplicity of the model basin, and initiali- 
zation or starting procedures in the basin. Of equal signifi- 
cance may be the coarseness of the grid spacing, which 
cannot recognize small-scale resonance phenomena re- 
stricted to a small region about the coast. Even within the 
linear equation limitations of this study, further research 
is required to include the effects from curvilinear coast- 
lines, two-dimensional variable depth basins, the effects 
of open boundary conditions on interior points of the basin, 
and the errors introduced by nonvanishing currents normal 
to a coast with finite depths. Further insight may also be 
gained by considering a bottom slip condition rather than 
vanishing bottom current. 

APPENDIX A 
A bottom stress formulation, necessary in equation (2), 

can be determined rather easily by means of a table of 
Laplace transforms, without requiring an explicit solution 
of the vertical current profile. However, the transport 
vertical current profile is directly formulated to analytic- 
ally investigate special problems such as transport forma- 
tion in deep and shallow waters, the formation of coastal 
currents, the transient surface slope, and comparisons with 
Ekman’s equilibrium cases. 

The vertical current profile is composed of drift and 
slope currents. In  this section, separate solutions in con- 
voluted form are given for these currents in terms of 
surface slope and surface wind stress. A superposition of 
the solutions gives the general vertical current profile. The 
vertical gradient of this current on the bottom then gives 
a form for the bottom stress. Coastal boundaries are not 
considered since special techniques, given in the main 
report, are used to handle these boundaries. It is convenient 
to form the solutions in terms of a nondimensional char- 
acteristic time parameter, TH= (v /H2) t .  

VERTICAL CURRENT PROFILES AND BOTTOM STRESS 
SOLUTIONS FOR LARGE TR 

Pure dri$ current-Ekman’s equation for pure drift 
current is, with the notation of equation (2), 

with boundary conditions 

anw 
=F(t); -- at. 1 =o, n=o, 1. 

The Laplace transform of (29) is 

with remaining boundary conditions 

. A  
A A 

H a2 

For preliminary considerations, and comparisons with 
classical solutions, let the surface stress be a suddenly 
applied constant force iFo  and let the resulting current for 
this special case be wo. The solution to equation (30) is 

A iHFo sinh a(l+z). , a = P .  wo=- (31) v/H2 V S ~  cosha 

A solution for the above, using an inversion integral, is 

s)ds=Z residues. (32) 

The poles of (31) are all simple. The residues from these 
poles are given in table l.wheren=0,1,2, ..., y=( l+ i )  EH, 
E=J’z (Ekman’s parameter), and on= [n+ (1/2)]n/H.  

A solution for equation (31) is then 

where 

Equation (33) may also be written as 

on setting t = O  in equation (33). 
Equation (33) is identical to the solution given by 

Nomitsu (1933~) using other methods; Nomitsu plotted 
hodographs for different depth basins with Ekman’s 
number as a parameter. Similar solutions have been 
obtained by Fjeldstad (1929) and Hidaka (1933) using 
integral equations. 
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TABLE 1.-Residues of the poles of equation (31) 

Poles Residues 

8 =o iHFo ~inh[y(l+~)] 
uy sinhy 

a =-if 0 

Before proceeding to more general cases of variable 
surface stress, it  is interesting to compare the equilibrium 
transport of equation (34) with Ekman's classical solution 
for the case of infinite depths. T o  do this, (34) is integrated 
in the vertical to form 

In  the above, the operations of summation and integration 
were interchanged; this is permissible since the series (34) 
is uniformly and absolutely convergent in the range of 
integration. Equation (35) can be now written as 

At this point, there is, a choice in limit procedures. Consider 

and 
iFo -(-1)"4iE2 1 lim Wo=y -- 

H-m n = ~  4E4 (.+a) 
t-f m 

The first limiting case is Ekman's classical solution for 
transport in an infinite depth basin. The second limiting 
case demonstrates that, in limiting procedures, care must 
be exercised on how the question of limits is asked. A 
simple physical interpretation could be as follows. Ekman 
assumes that a balance between input momentum and 
dissipation exists without specifying how the balance was 
reached. In  the latter equation of (37) , the depths are too 
large for bottom stress to act as a dissipating mechanism; 
hence, the only way remaining to balance momentum 
is for the fluid to work against the surface stress cyclically 
with time. This suggests that, for deep water systems, an 
internal dissipating mechanism should be considered. 
A very simple one could be the Guldberg-Mohn assump- 
tion where internal friction is given by -rw, r a constant. 
Equation (29) could then be written as 

Replacingf withf' in (36), one finds that the sequence H ,  
t -+ m, or t, H + is now irrelevant. The transport, of 
course, is now no longer 90' cum sole to the wind stress, 
but skewed by the angle tan-' r / j .  Since f >> r,  except 
at or very near the Equator, internal viscosity is not very 
important in transient solutions except a t  small latitudes 
or large depths. In this study, only the shallow continental 
shelf is used so that for practical considerations internal 
viscosity effects are small compared to bottom stress 
during transient conditions. 

It is desirable to remove the restriction of a constant 
wind stress. Suppose the wind stress varies with time, but 
with the initial property of F(O)=O and aF/atl,=,= 0. 
Then the solution to equation (30) is 

A A A  
w (2 ,s) =sF(s) wo( 2 , s) . (39) 

The solution to the above can immediately be written as 

Inserting equation (34) into the above, integrating by 
parts, and noting that AnB,=2v, one finds the drift 
current to be 

The drift transport is 

From equation (40), the drift current bottom stress 
becomes 

or 

where 

Slope current-Ekman's equation for slope current is, 
with the notation of equation (2), 

aw a2w -=-ifw+7 7 + q  at H aZ 
with boundary conditions 

w(-1, t>=o;- - - -0; g =o, n=o, 1. H a Z  r = O  

(43) 

Let the surface slope qb be constant and the current for 
this special case wo. When using Laplace procedures as 
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in drift current, Suppose now that the surface slope varies with time 
are q ( O ) = O  and ap/&l,=,=Q. and the initial conditions 

A Hzqo[  cosh a21 4- (44) Then 
A A A  

and a= - e  

W(Zj S)=S$! (S)WO(ZJ  8). (52) 
v/H2 wo(z,s)=--- 1---- 

VSCY2 cosh a 

The inversion integral of the above, with identical poles 
as in drift current, gives a solution of 

The solution to the above can be immediately written as 

WO(Z,T )dT .  a, w(2, t ) = -  

When inserting equation (47) into the above and inte- 
-40 5 COS [(n+i)z]e-ent. (45) grating by parts, the slope becomes 

vHn=O P n  

Equation (45) can then be written as 

(47) 

This solution is identical to the one given by Nomitsu 
(1933b) using other methods. 

Before proceeding to more general cases of variable 
surface slope, it is interesting to  compare the equilibrium 
transport of equation (47) with Ekman's classical solu- 
tion for infinite depths. For one to accomplish this, 
equation (47) is integrated in the vertical to form 

From equation (53), the slope current bottom stress 
becomes 

or 

where 

BOTTOM STRESS SOLUTIONS FOR SMALL rH 
Pure dri$ current-Consider equation (3 1) with a 

variable wind stress so that 

A A h  

vc;,(t)=zZo PO ( - 1 ) " A n  p; ~ l - e - e n q .  (48) 

W ( Z ,  s)=F(s)G(z ,  S )  
If t+ m , then where 

A H sinh a ( l+z )  CY=--. s+if G ( z ,  s)=- lim W O = z  Po C (-l)nAn* (49) va cosha ' v/H2 
t - P  n=O 0: 

If a solution for bottom stress only is desired, it is not 
necessary to solve for the vertical current profile. Bottom 
stress is given as 

If (46) is integrated in the vertical, then 

1 ijHz (-])*Anm 
Y v n=O P i  - tanh ~ = l - -  

A 
(57) Substituting the above into equation (48) gives 

t - f m  Y 

1 sinh 2EH4- sin 2 E H  '[-'+m cosh 2EH+ cos 2EH 
i - sinh 2EH+ sin 

+ r H  ' cosh 2EH+ cos 2 E H  
and 

The inversion of sech CY, from Laplace transform tables, 
immediately gives equation (42) for large TH. To consider 
small TH, rearrange sech CY as 

The following inversions 

a A 1 J' - * [ e - O  61 =- eba2/41 and J' -'[G (a - b) ]=-  e0%7( t / c )  , (51) 
2@ C 

that Ekman's classical for 'lope transport' 10 Forinitialconditions, caremust be taken thatq=OforlIO. Inappendix C, it isshown 

stress F(t)  jumps immediately to q(O)=--F(O)IH. Thus it I S  required that -F(t)=O for 
t<O; if F i s  a constant, then it is required to consider a step function that changes in value 

If the above limiting procedure had been reversed, then 

drift-current case. fromOtoPatt=O. 

that the dynamic slope at a coaatd boundary for initially quiescent sea and surface 

there would be a factor ( l -e - t f t )  just, 8s in the pure 
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from any table of Laplace transforms applied to (58), 
gives for equation (57) 

where 

. ,  

The interchange of summation and Laplace inversion is 
justified, since the series in (58) is absolutely convergent 
on the lines (Re (s) =constant) on which the inversion in- 
tegral is defined. The convergence properties of the above 
kernel are discussed in the main report. 

Pure slope current-Consider equation (44) with a 
variable surface slope so that 

Bottom stress is given as 

The inversion of tanh a/a, from Laplace transform tables, 
immediately gives the expansion of (55) in terms of large 
TH. The expansion in terms of small TH is obtained by 
rearranging tanh afa! as 

The following inversions 

e --a2/41 A 1 

JZ C 
=--- 9 and J- l  [G(cs--b)]=- eatIcG(tfc), 

from any table of Laplace transforms applied to (62) ' 
gives for equation (61) 

where 

The convergence properties of the above kernel are 
discussed in the main report. 

APPENDIX B 
Recourse is made to Lebesgue's dominated convergence 

theorem for improper integrals (Apostol 1967, Riesz 1955) 
to justify the exchange of summation and integration 
operations for the exact kernels in equation (6). 

LEBESGUE'S THEOREM 

If the functionsf,(t), assumed summable in the interval 
(a$), converge almost everywhere to  a functionf(t) and if 
furthermore there exists a summable function g( t )  such 
that Ijn(t)I<g(t) for all n, then the function j(t) is also 
summable and 1 fn ( t)dt-J f( oat. 

Using the notation of Apostol (1967), one finds the 
above to be 

Since the exact kernels are uniformly convergent for all 
ranges of positive t except neighborhoods of t=O, then 
only a small range, say 0 to 1, needs to  be retained in 
the limits of integration. Consider now only the pertinent 
form of the exact kernel KF in equation (6) 

To develop the summable function g(t), consider 

- .  
where O < E < ~ .  Now let 

where is standard notation for the gamma function 
that is finite when E>O. But then ]fn(t)I<g(t), and l1 g(t)dt converges; therefore, equation (64) follows. A 

similar proof holds for the exact KQ kernel, so the integral 
and summation operators can be interchanged. 

APPENDIX C 

For coastal boundary conditions, it may be preferable 
to  determine (2)&, the surface gradient, in terms of Cz)F, 
the surface stress. This relation does not determine the 
coastal surges; however, they can be computed by extrapo- 
lating surge heights on interior points of the basin to  
agree with (=)& on the boundary. Consider the boundary 
condition 

(66) Re ( Wd, i l l  + W ,  lope)  = 0. 
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Note that the above differs from the boundary condition 
(24) where Re(d/dt) (W,,,+ W,,J =O. 

To start, one writes equation (66) in terms of the 
approximate kernels given by (22) and (23); later, the 
exact kernels will be considered. From equations (41) 
and (54), 

From equations (22) and (23), 

where 
AT 
2bl 

c2)XF=- cos jt(e-blt-e-~bl'), . . . etc. 

Then equation (71) implies 

A 
where ( ) means ( ( After some alge- 

braic manipulation, 

and (73) 

and 

where A=9~/32 ,  B= n2/8, and bl= (7914) (v/H2).  From 
(68), the alternate kernels follow 

and (69) 

e- D exp (-blt). 
bi  

Then equation (67) can be written as 

O=Re (61)= f!? [(')F(t--7) C O S ~ T  

B 
b1 

s,'{ 2bl 

+(u)F(t-~)  sin f T ]  [e-'lr-e-901T]+- [ ( " ) & ( t - ~ )  cos j r  

+@)& ( l -T )  sinJ~]e-~l' 

This may be written in convolution form as 

o= (z)XF*(z)p+ (u) xF*(u)~+ (2) Q * (z )  Q+ ( v )  g , * ( v )  Q (71) 

Applying the above to (72) and taking the inverse trans- 
form, one obtains 

+ (64b;+ 2j2) cos f ~ e - ~ ~ l ' +  8b Ife-gbl" sin fT]dT 

1 P l  

If the above is used in computations, then recursive 
relations could be formulated as in the main report. 
The presence of (I)& in the last term is a complication; 
however, the Coriolis coefficient reduces this term several 
orders of magnitude compared to others, so that it can 
be ignored. For the case H h O ,  it follows that 

1 P t  

-("F(t-T) & f7]8(T)d7], 

10 a(.) =Dirac function, or (z)Q(t)=--(Z)F(t) .  9 (75) 

This relation is different from that given by equation (28) 
in the main report, where the exact kernels KF, KQ were 
used. The boundary condition applies to the coastal 
surface gradients and not the coastal surges. 
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If the exact kernels are used, then the relation of 
(")Q to cZ)F on the boundary having finite depths is 
complicated. For simplification, a solution is given only 
for the special case of 0=(Wd,,,+W,,,,,), that is, the 
total transport vanishes at  the boundary. Using equations 
(56) and (60)) we form the following: 

A H sinh oi(l+z) F -  va cash CY 

or 

F=-Q " "[1 - csch2 i-k coth i]. 
Now let 

" 1  a " 1  a Kl=2 csch2 - and K2=-- coth -, 2 a! 2 (77) 

Inverse transforms of the above, using residues, are 

m 41 K1(t)=2+- exp (-ijt) C exp H2 n=l  

and (78) 

Applying the above to equation (76) gives 

32v2 
H4 n=l  

F(t)=-Q(t)+-  n 2 , g n 2  

The limit of the above as H+O gives 

since 

-r2 tn2 exp -4Pn2-t t =- - = -I 1 H2 n=l H2 a2,,=1n2 2 m 1  3 
"32v  m 

This is another derivation of equation (28) in the main 
report. 

APPENDIX D 

I n  numerical computations with finite differencing, we 
use Shuman's (1962) notation: 

8As 

INTERIOR POINTS 

The momentum prediction equations given by equation 
(4b) in finite-difference form are 

The terms cz)F, (")F, (gH) (i3ho/dx), and (gH)(dh,/@) are 
driving forces computed from the model storm; the 
derivative of the inverted barometric effect (atmospheric 
pressure gradient) is given and need not be set in finite- 
difference form. Equations (20) and (21) are used to 
evaluate Z C ( T ~ ) ,  Z e (i,) a t  timemAt. The dynamic surface 
slope gradients in (21) are not given, therefore they are 
set as h, , hy - 

gave small spurious waves in the basin in the vicinity of 
the storm center. This could be the result of the atmos- 
pheric pressure driving force (and other variables of the 
storm model) computed with an error of position as great 
as half a mile at  grid points of the basin. The smoothing 
operator applied to the driving forces of the storm did 
damp out the small spurious waves, and for convenience 
in computations was also applied to the Coriolis and 
bottom stress terms. Except for the small spurious waves, 
the results were nearly the same with or without the 
smoothing operator. 

-2yv -2zy 

--zzuu Empirical tests without the smoothing operator ( ) 

The continuity equation (4) becomes 

OPEN BOUNDARIES 

With open boundaries, it is impossible to use the nine- 
point difference forms of equation (81). The centered 
difference form n: was used for gradients along the 
boundaries, and the uncentered form 

was used for gradients normal to the boundary. 

(84) 

COASTAL BOUNDARY 

The centered difference form is used to compute trans- 
port parallel to the coast. The boundary equation (24) is 
used to compute surges on the coast in preference to the 
continuity equation (4). T o  display the dynamic slope 
a t  the boundary, we rewrite the boundary equation with 
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the aid of (2) a t  the time mAt as ’ 1 

InC”(,,,, there is a term containing (i3h/ay)m which 
cannot be determined explicitly, but it is multiplied by a 
small coefficient and can be safely ignored or else replaced 
with known slopes a t  interior points. Iterative tests show 
that the coastal surge is insensitive to this term in the 
boundary equation. The term (2v/H2) (Etrll)  in the di- 
visor approaches 1 as H-tO, which is readily seen by 
examining equation (14) ; therefore, zero depths cannot 
be used. 

An extrapolation scheme is now used where surge 
heights on interior grid points of the basin are connected 
to the boundary in conformity with the slope given by the 
left side of equation (85); this is done using the uncen- 
tered difference form (84). Because the depths vary, the 
following identity is used 

Empirical tests show that the right side is preferable when 
using uncentered difference forms. For notational conven- 
ience, we denote the right side of (85) by x:J and use 
the right side of (86) with (84) to form 

Although analytic solutions satisfying the boundary 
equation (24) do satisfy continuity conditions on the 
boundary, there is no guarantee that the numerical 
scheme of this study satisfies continuity on the boundary. 
Stability studies for mixtures of centered, uncentered, 
and nine-point difference forms lie beyond the scope of 
this study. Empirical comparisons between computed and 
observed results are used as an indicator of the effective- 
ness of the numerical scheme. 
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